Single and twin coincidence points for multivalued maps in Fréchet spaces
نویسندگان
چکیده
منابع مشابه
Fixed Points of Multivalued Maps in Modular Function Spaces
The purpose of this paper is to study the existence of fixed points for contractive-type and nonexpansive-type multivalued maps in the setting of modular function spaces. We also discuss the concept of w-modular function and prove fixed point results for weakly-modular contractive maps in modular function spaces. These results extend several similar results proved in metric and Banach spaces se...
متن کاملFixed Points of Condensing Multivalued Maps in Topological Vector Spaces
The Schauder conjecture that every continuous single-valued map from a compact convex subset of a topological vector space into itself has a fixed point was stated in [12, Problem 54]. In a recent year, Cauty [2] gave a positive answer to this question by a very complicated approximation factorization. Very recently, Dobrowolski [3] established Cauty’s proof in a more accessible form by using t...
متن کاملCoincidence Points and Common Fixed Points for Expansive Type Mappings in $b$-Metric Spaces
The main purpose of this paper is to obtain sufficient conditions for existence of points of coincidence and common fixed points for a pair of self mappings satisfying some expansive type conditions in $b$-metric spaces. Finally, we investigate that the equivalence of one of these results in the context of cone $b$-metric spaces cannot be obtained by the techniques using scalarization function....
متن کاملCommon fixed points of single-valued and multivalued maps
The fixed points theorems for Rhoades-type contraction mapping were investigated by many authors [1, 5, 8, 10, 13, 16, 22] and the more results on this fields can be found in [2, 4, 9, 11, 15, 23]. Hybrid fixed point theory for nonlinear single-valued and multivalued maps is a new development in the domain of contraction-type multivalued theory (see [3, 7, 10, 12, 14, 17, 18, 20] and references...
متن کاملBest proximity pair and coincidence point theorems for nonexpansive set-valued maps in Hilbert spaces
This paper is concerned with the best proximity pair problem in Hilbert spaces. Given two subsets $A$ and $B$ of a Hilbert space $H$ and the set-valued maps $F:A o 2^ B$ and $G:A_0 o 2^{A_0}$, where $A_0={xin A: |x-y|=d(A,B)~~~mbox{for some}~~~ yin B}$, best proximity pair theorems provide sufficient conditions that ensure the existence of an $x_0in A$ such that $$d(G(x_0),F(x_0))=d(A,B).$$
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Applied Mathematics Letters
سال: 1999
ISSN: 0893-9659
DOI: 10.1016/s0893-9659(99)00128-7